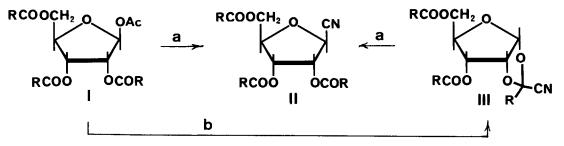
Tetrahedron Letters, Vol.23, No.2, pp 237-238, 1982 0040-4039/82/020237-02\$03.00/0 Printed in Great Britain © 1982 Pergamon Press Ltd.

> A FACILE PREPARATION OF ∂ -ACYLATED β -D-RIBOFURANOSYL CYANIDE, AN IMPORTANT INTERMEDIATE OF C-NUCLEOSIDE SYNTHESIS


> > Kiitiro Utimoto* and Takafumi Horiie

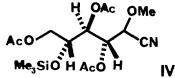
Department of Industrial Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

Abstract — Tri- θ -benzoyl and tri- θ -acetyl derivatives of the title compound are obtained from the corresponding l- θ -acetates in good yields by treatment with cyanotrimethylsilane.

 $2,3,5-\text{Tri-}\theta$ -benzoyl- β -D-ribofuranosyl cyanide [I (R = Ph)] has been used as a versatile intermediate for the synthesis of C-nucleoside antibiotics^{1,2} and its preparation from D-ribose was accomplished by the reaction of the corresponding bromide with mercuric cyanide.³ This paper describes an efficient and simple procedure for the preparation of 2,3,5-tri- θ -benzoyl and tri- θ -acetyl- β -D-ribofuranosyl cyanide [I (R = Ph, Me)] from easily accessible 1- θ -acetates I (R = Ph, Me) by means of cyanotrimethylsilane.

A mixture of 1-0-acetyl-2,3,5-tri- \emptyset -benzoyl- β -D-ribofuranose [I (R = Ph), 1.09 g, 2.16 mmol], cyanotrimethylsilane (1.2 ml, 9.3 mmol), and SnCl₂ (87 mg, 0.46 mmol) was heated at 70°C for 2 h. The reaction mixture was worked up with aq. NaHCO₃ and extracted with ether. The ethereal solution was washed (sat. NaCl), dried (Na₂SO₄), and concentrated. Column chromatography (silica gel) of the residue gave 2,3,5-tri- \emptyset -benzoyl- β -D-ribofuranosyl cyanide [I (R = Ph), 860 mg, 85% yield].^{3,4,5}

G. Me_3SiCN , $SnCl_2$, $70^{\circ}C$ (R = Ph); Me_3SiCN , $BF_3 \cdot OEt_2$, r.t. (R = Ph, Me). b. Me_3SiCN , $SnCl_2$, r.t. (R = Ph, Me)


[Dedicated to Professor Hitosi Nozaki on the occasion of his 60th birthday]

237

When the above described mixture was stirred for 2 h at room temperature, 3,5-di-0-benzoyl-1,2-0-(1-cyanobenzylidene)-D-ribofuranose [III (R = Ph)] was obtained in 45% yield (96% of the consumed starting material) along with 53% of the recovered I. The resulting III was converted to the cyanide II (R = Ph) by treatment with cyanotrimethylsilane at 70°C in the presence of SnCl₂. Application of $BF_3 \cdot OEt_2$, in place of SnCl₂, gave the same cyanide II in 85% yield from I after stirring at room temperature for 2 h.

Acetylated cyanide II (R = Me) was also obtained in 64% yield in addition to the intermediate III (R = Me, 29% yield) by the reaction of I (R = Me) with cyanotrimethylsilane under the catalytic action of $BF_3 \cdot OEt_2$ at room temperature. The reaction catalyzed by $SnCl_2$ at room temperature gave III (R = Me, 96% yield) which was recovered unchanged after treatment with cyanotrimethylsilane and $SnCl_2$ at 70°C. Transformation of III (R = Me) into II (R = Me) was successful by treatment with cyanotrimethylsilane under catalytic action of $BF_3 \cdot OEt_2$ at room temperature.

Reaction of 2,3,5-tri- θ -acetyl-1- θ -methyl- β -D-ribofuranose gave IV⁶ as the main product (34%, SnCl₂; 71%, BF₃·OEt₂) and the formation of II (R = Me) could not be observed.

The above described results are examples of successful application of a novel cyanation by means of cyanotrimethylsilane to carbohydrates. $^{7}\,$

REFERENCES AND NOTES

- 1. Synthesis of formycin, formycin B, and oxoformycin: (a) L. Kalvoda, <u>Collect. Czech. Chem. Commun.</u>, 43, 1431 (1978); (b) M. Bobek, J. Farkaš, and F. Šorm, <u>Tetrahedron Lett.</u>, 4611 (1970); (c) J. Farkaš and F. Šorm, <u>Collect. Czech. Chem. Commun.</u>, <u>37</u>, 2798 (1972); (d) E. M. Acton, K. J. Ryan, D. W. Henry, and L. Goodman, <u>Chem. Commun.</u>, 986 (1971).
- Showdomycin synthesis: (a) G. Trummlitz, D. B. Repke, and J. G. Moffatt, <u>J. Org. Chem.</u>, <u>40</u>, 3352 (1975) and references cited therein; (b) L. Kalvoda, <u>J. Carbohydr. Nucleosides</u>, Nucleotides, <u>3</u>, 47 (1976).
- 3. M. Bobek and J. Farkaš, Collect. Czech. Chem. Commun., 34, 247 (1969).
- H. P. Albrecht, D. B. Repke, and J. G. Moffatt, <u>J. Org. Chem.</u>, <u>38</u>, 1836 (1973).
- Recrystallization from EtOH gave a crystalline product, mp 77.5-78.0°C (lit.³ mp 78.5-80°C).
- 6. Structure was determined by ir, 1 H-nmr, and 13 C-nmr.
- K. Utimoto, Y. Wakabayashi, Y. Shishiyama, M. Inoue, and H. Nozaki, <u>Tetrahedron Lett.</u>, 22, (1981), accepted for publication.

(Received in Japan 9 October 1981)